
In the manufacturing industry, sometimes many products require coloring, and the ideal coloring material is lithopone. This is a product manufactured through chemical methods. It is a mixture of barium sulfate and zinc sulfide. When the product contains more zinc sulfide, its effect will be better, that is, the coloring ability will be more stable. If you want to buy high-quality lithopone, you have to understand its properties and characteristics. Today’s article will give you a detailed understanding of lithopone.
In order to contribute with experimental evidence that could help to achieve a better understanding of the field for future regulation, in the present work, the biocompatibility of commercial P25TiO2NPs (one type of TiO2NPs used in sunscreen formulations) and two novel functionalized P25TiO2NPs were evaluated under solar simulated irradiation. White light, generated by red, blue, and yellow LEDs, together with UV ones, was chosen to simulate the solar spectra. Functionalization of TiO2NPs was made with antioxidant vitamins in order to prevent the expected photo-initiated ROS production when nanoparticles are exposed to the simulated solar spectra. Vitamin B2 (riboflavin) and vitamin C were chosen to carry out the functionalization because they are water-soluble, low-cost, and are a constitutive part of biological processes. In addition, it is known that both have the potential to prevent macromolecular oxidation by ROS [23], [24], [25], [26].
Data availability statement
Prof Matthew Wright, both a member of the FAF Panel and chair of EFSA’s working group on E 171, said: “Although the evidence for general toxic effects was not conclusive, on the basis of the new data and strengthened methods we could not rule out a concern for genotoxicity and consequently we could not establish a safe level for daily intake of the food additive.”
Titanium Dioxide Raw Material Tio2 Powder
Titanium dioxide has many purposes in both food and product development.


Likewise, the plastics industry relies heavily on titanium dioxide to enhance the appearance and durability of plastic products. With the increasing popularity of plastic packaging and consumer goods, the demand for titanium dioxide in this industry is expected to witness steady growth in the coming years. The versatility of titanium dioxide makes it a valuable additive to improve the brightness, opacity and color stability of plastic materials, ensuring improved product performance and consumer satisfaction.
In an early study Jani et al. administred rutile TiO2 (500 nm) as a 0.1 ml of 2.5 % w/v suspension (12.5 mg/kg BW) to female Sprague Dawley rats, by oral gavage daily for 10 days and detected presence of particles in all the major gut associated lymphoid tissue as well as in distant organs such as the liver, spleen, lung and peritoneal tissue, but not in heart and kidney. The distribution and toxicity of nano- (25 nm, 80 nm) and submicron-sized (155 nm) TiO2 particles were evaluated in mice administered a large, single, oral dosing (5 g/kg BW) by gavage. In the animals that were sacrificed two weeks later, ICP-MS analysis showed that the particles were retained mainly in liver, spleen, kidney, and lung tissues, indicating that they can be transported to other tissues and organs after uptake by the gastrointestinal tract. Interestingly, although an extremely high dose was administrated, no acute toxicity was observed. In groups exposed to 80 nm and 155 nm particles, histopathological changes were observed in the liver, kidney and in the brain. The biochemical serum parameters also indicated liver, kidney and cardiovascular damage and were higher in mice treated with nano-sized (25 or 80 nm) TiO2 compared to submicron-sized (155 nm) TiO2. However, the main weaknesses of this study are the use of extremely high single dose and insufficient characterisation of the particles.
How are we typically exposed to titanium dioxide?
With the rise of nanotechnology, research in recent years has also shown the dangers of titanium dioxide (TiO2) nanoparticles, and their genotoxicity, which refers to a chemical agent’s ability to harm or damage DNA in cells, thus potentially causing cancer.
1. Paints and Coatings Due to its excellent opacity and brightness, anatase TiO2 is extensively used as a pigment in paints. The high refractive index of this compound allows for better coverage and durability, making it an essential component in decorative and protective coatings.
Titanium dioxide is an essential compound in a variety of industries, from cosmetics and personal care products to coatings and plastics. Demand for this versatile chemical is expected to soar as 2023 approaches. In this blog, we will explore the potential growth and future prospects of Titanium Dioxide, shedding light on its importance in different industries.
Another vital aspect to consider when working with a lithopone pigment pricelist is the effect of quality on pricing. Higher purity pigments generally command a premium price because of their enhanced performance characteristics. When choosing a supplier, it’s essential to look for manufacturers who adhere to strict quality control standards. This ensures that the pigment not only meets industry standards but also performs reliably in various applications, thus justifying any additional costs.
Is titanium dioxide dangerous? Has it been linked to any health issues?
Ability to scatter and absorb UV radiation makes TiO2 a crucial ingredient for sunscreen, protecting the skin from harmful, cancer-causing UV rays.
Importance in Factory Settings